On a Conjecture about Mra Riesz Wavelet Bases

نویسندگان

  • BIN HAN
  • David R. Larson
چکیده

Let φ be a compactly supported refinable function in L2(R) such that the shifts of φ are stable and φ̂(2ξ) = â(ξ)φ̂(ξ) for a 2π-periodic trigonometric polynomial â. A wavelet function ψ can be derived from φ by ψ̂(2ξ) := e−iξ â(ξ + π)φ̂(ξ). If φ is an orthogonal refinable function, then it is well known that ψ generates an orthonormal wavelet basis in L2(R). Recently, it has been shown in the literature that if φ is a B-spline or pseudo-spline refinable function, then ψ always generates a Riesz wavelet basis in L2(R). It was an open problem whether ψ can always generate a Riesz wavelet basis in L2(R) for any compactly supported refinable function in L2(R) with stable shifts. In this paper, we settle this problem by proving that for a family of arbitrarily smooth refinable functions with stable shifts, the derived wavelet function ψ does not generate a Riesz wavelet basis in L2(R). Our proof is based on some necessary and sufficient conditions on the 2π-periodic functions â and b̂ in C∞(R) such that the wavelet function ψ, defined by ψ̂(2ξ) := b̂(ξ)φ̂(ξ), generates a Riesz wavelet basis in L2(R).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riesz Multiwavelet Bases

Compactly supported Riesz wavelets are of interest in several applications such as image processing, computer graphics and numerical algorithms. In this paper, we shall investigate compactly supported MRA Riesz multiwavelet bases in L2(R). An algorithm is presented to derive Riesz multiwavelet bases from refinable function vectors. To illustrate our algorithm and results in this paper, we prese...

متن کامل

The Matrix-Valued Riesz Lemma and Local Orthonormal Bases in Shift-Invariant Spaces

We use the matrix-valued Fejér–Riesz lemma for Laurent polynomials to characterize when a univariate shift-invariant space has a local orthonormal shift-invariant basis, and we apply the above characterization to study local dual frame generators, local orthonormal bases of wavelet spaces, and MRA-based affine frames. Also we provide a proof of the matrixvalued Fejér–Riesz lemma for Laurent pol...

متن کامل

A New Approach to Continuous Riesz Bases

This paper deals with continuous frames and continuous Riesz bases. We introduce continuous Riesz bases and give some equivalent conditions for a continuous frame to be a continuous Riesz basis. It is certainly possible for a continuous frame to have only one dual. Such a continuous frame is called a Riesz-type frame [13]. We show that a continuous frame is Riesz-type if and only if it is a con...

متن کامل

On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules

In this paper, we investigate duality of modular g-Riesz bases and g-Riesz bases in Hilbert C*-modules. First we give some characterization of g-Riesz bases in Hilbert C*-modules, by using properties of operator theory. Next, we characterize the duals of a given g-Riesz basis in Hilbert C*-module. In addition, we obtain sufficient and necessary condition for a dual of a g-Riesz basis to be agai...

متن کامل

The Feichtinger Conjecture for Wavelet Frames, Gabor Frames and Frames of Translates

The Feichtinger conjecture is considered for three special families of frames. It is shown that if a wavelet frame satisfies a certain weak regularity condition, then it can be written as the finite union of Riesz basic sequences each of which is a wavelet system. Moreover, the above is not true for general wavelet frames. It is also shown that a sup-adjoint Gabor frame can be written as the fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004